
Lecture Notes on Stream Ciphers and RC4

Rick Wash

rlw6@po.cwru.edu

Abstract. In these notes I explain symmetric key additive keystream
ciphers, using as an example the cipher RC4. I discuss a number of attack
models for this class of ciphers, using attacks on RC4 as examples. I
cover a number of attacks on RC4, some of which are effective against
implementations of RC4 used in the real world.

1 Introduction

Stream ciphers are a very important class of encryption algorithms. These notes
explain what stream ciphers are, explain common subclasses of stream ciphers,
and discuss the attack models relevant to stream ciphers. They also discuss the
stream cipher RC4 in detail, using it as an example for discussing a number of
different attacks.

2 Stream Ciphers

Symmetric key cryptosystems are an important type of modern cryptosystem.
Symmetric key systems are cryptosystems where the same key is used for both
encryption and decryption. This class of cryptosystems is important in modern
cryptography because, in general, symmetric key cryptosystems are much faster
than public key cryptosystems.

2.1 Block vs. Stream Ciphers

The two major types of symmetric key systems are block ciphers and stream
ciphers. Block ciphers in general process the plaintext in relatively large blocks
at a time. The encryption function is the same for every block. A block cipher
can be represented by a bijective function f which accepts as input a block of
plaintext of a fixed size, and a key, and outputs a block of ciphertext. See Eq. 1.

f(p, k) = c (1)

Stream ciphers, on the other hand, process plaintext in small blocks (some-
times as small as a single bit). In contrast to block ciphers, stream ciphers keep
some sort of memory, or state, as it processes the plaintext and uses this state

as an input to the cipher algorithm. More specifically, a stream cipher is two
functions, f and g, given in Eq. 2.

σt+1 = f(σt, pt, k) (2)
ct = g(σt, pt, k)

f is the next state function, which given the current state, the next block of
plaintext, and the key produces a new state. g is the output function, which
given the same three inputs produces a block of ciphertext as output. Note that
then next time f and g is called (at time t+ 1), the state will be different.

2.2 Types of Stream Ciphers

In [1], an interesting distinction is made between two types of stream ciphers
– synchronous stream ciphers and self-synchronizing stream ciphers. A syn-
chronous stream cipher is a cipher where the a keystream is generated sepa-
rately from the plaintext and is then combined with the plaintext later to form
the ciphertext. More specifically, a synchronous stream cipher is

σt+1 = f(σt, k)
zt = g(σt, k) (3)
ct = h(zt, pt)

where f is the next state function, g is the keystream output function, and h
is the function that combines the plaintext with the keystream to produce the
ciphertext. Note that decryption only requires inverting the h function.

The two functions f and g in Eq. 3 are together known as a the keystream gen-
erator . The output of these two functions, the sequence of zt values, is known as
the keystream. As such, synchronous stream ciphers are also known as keystream
generator ciphers. This class of ciphers has the advantage that the keystream
can be precomputed without knowledge of the plaintext or ciphertext.

A particularly popular subclass of keystream generator stream ciphers is the
binary additive stream ciphers. In this class of ciphers, the h function is the XOR
function (represented by ⊕). This will be the primary model of stream cipher
that will be analyzed.

3 Attack Models

Stream ciphers are generally studied with respect to a number of common attack
models. These attack models are considered good models to study the security
of stream ciphers in, but they do not cover all possible attacks. Some of these
models provide for more practical attacks than others do.

One thing to remember is that stream ciphers (and most encryption algo-
rithms in general) do not provide for message integrity. This must be done by
some external algorithm, such as a MAC (Message Authentication Code). It is

2

possible to use the lack of message integrity checks to partially determine some
of the plaintext, but that is beyond the scope of this paper.

A MAC is particularly important for binary additive stream ciphers. For this
class of ciphers, flipping a bit of the ciphertext will flip the corresponding bit
of the plaintext, and only affect that one bit. This can be used by an attacker
to change messages. A MAC will prevent this type of attack. This property,
that a change in the ciphertext will produce a known predictable change in the
plaintext, is called malleability .

3.1 Brute Force Key Search

The basic attack against any symmetric key cryptosystem is the brute force
attack . In this attack, the attacker keeps guessing what the key is until they guess
correctly. In general, one known plaintext, or the ability to recognize a correct
plaintext is all that is needed for this attack. However, all good cryptosystems
should be designed such that this attack is impractical.

For a key of size n, a brute force search would consist of trying all 2n keys
to see which one works. If it is possible to recognize the correct plaintext, then
on average the correct key will be found in 2n−1 guesses. Although this attacks
works on all modern cryptosystems, its complexity grows exponentially with
respect to the key size, to choosing an appropriately large key size will provide
the needed security. Experts suggest having at least a 90 bit key for security in
today’s world.

Time/Memory Tradeoffs It is possible to speed up a brute force search by
pre-computing some values and storing them in memory. This is trading off
memory usage for time it takes to perform the attack.

Sampling Resistance In [2], an interesting property of stream ciphers is dis-
cussed in the context of time/memory tradeoffs of brute force attacks. This
property, known as the sampling resistance, is how easy it is to find keys that
generate keystreams with a certain property of the output.

3.2 Real or Random Distinguishers

In a theoretical model, the output of a “good” keystream generator should ap-
pear random. If the output was truely random, then the cipher would be a one-
time-pad. However, since the output cannot be truely random, at some point
in the keystream we should be able to distinguish between the real keystream
generator and a truely random keystream generator.

It follows from this logic that the more keystream output that is needed to
distinguish between the real cipher and random output, the closer that output
is to being random, and the better the cipher. Therefore, a common academic
attack model for stream ciphers is the real or random distinguisher . In this
model, the goal is to come up with a distinguisher.

3

A distinguisher is a probabilistic polynomial-time algorithm A. A takes as
input N bits of data, which are either from the real stream cipher or are com-
pletely random data. A then has to, in polynomial time, output either “Real”
or “Random”. If this is correct with a non-negligible probability, then this is
a good distinguisher.This N indicates how good the distinguisher is. In most
cases, larger N will produce a more accurate distinguisher.

In [3], a distinction is made between two different type of distinguishers. The
first type of distinguisher is what has already been discussed, and is called a
polynomial-time distinguisher . The other type is what is known as a polynomial-
space distinguisher . For this type of distinguisher, the attacker is given a block
box which is either the cipher or a true random generator. This black box can
be reset and rerun with a random key a polynomial number of times. The goal is
to distinguish between the two black boxes. According to [3], these two notions
are equivalent from the information-theoretical viewpoint, though the difference
in bias can be significant.

3.3 Key Weaknesses

There are also some more specific models that should be discussed, because they
are directly relevant for the discussion on the security of RC4. These are related
to the key. Specifically, the key completely determines the output sequence from
a keystream generator. In a good keystream generator, each bit of the output
will depend on the entire key for its value, and the relationship between the key
and a given bit (or set of bits) should be extremely complicated.

Key-Biased Output The first condition listed in §3.3 is every bit of the output
is dependent on the entire key for its value. This means that changing any single
bit of a key should have a 1

2 probability of affecting each bit of the output.
When this property holds, then in order to brute force a key, every possible

key must be tried, and there will be no relationship between bits of the key
and the output. This means that uncertainties of the individual bits of the key
multiply when calculating the total number of possible keys.

Let us see what happens when this property does not hold. Assume that the
8 bits of the output is dependent only on the first 8 bits of the key. This means
that for a given value q = k1 . . . k8 of the first 8 bits, all keys that have the value
q for the first 8 bits will have the same first 8 bits output.

How can this be used to decrease the brute force search time? If you first
guessed all possible values of q, you could check if they are correct by comparing
the output to the first 8 bits of the output. Once you determine q, then you can
brute force the other 2n−8 bits of the key. This total time required to brute force
this key would be 28 + 2n−8 ≈ 2n−8. This caused a factor of 256 reduction in
the amount of work necessary to brute force the key.

Thus, any way in which the output is baised by a subset of the bits of the
key, this information can be used to mount an attack on the cipher.

4

Related Key Attacks The second condition listed in §3.3 is that the relation-
ship between the key and each bit of the output should be complex. What this
means is that a given known relationship between two keys should not produce
a known relationship in the output of the keystream generator. This kind of in-
formation can also be used to provide an attack by reducing the effective brute
keysearch time. These kind of attacks are known as related key attacks.

For this purpose an example also serves well. Assume we have a keystream
generator that has the property that the bitwise compliment of the key pro-
duces the bitwise compliment of the keystream. This information can be used to
(slightly) speed up a brute force search. For each keystream generated by a guess
of the key, compliment the keystream and see if that one generates the correct
plaintext. If it does, then the compliment of the key is correct. In this way, you
never have to check the compliment of any key you have already checked. This
reduces the search space by a factor of two.

Use of Initialization Vectors One problem with binary additive keystream
ciphers is that the same key will always produce the same keystream. This means
that repeatedly using the same key is just as bad as reusing a one-time-pad. To
solve this problem, the concept of initialization vectors is useful.

An initialization vector (IV) is a random value that changes with every
instance of the cipher that is used to add some randomness to the output of the
cipher. Since this value is random and unique, it makes the output of the stream
cipher different than other outputs, even if the same key is used. This is useful
when key exchange is expensive.

In ciphers with a variable size key, a common method of adding an IV to a
cipher is to combine it with the real key in some fashion. For example, prepending
a small IV to the real key to form a larger session key is quite common. Another
way of using an IV is to encrypt the IV with the real key, or encrypt the real
key with the IV, and use this encrypted value as a session key.

It is important to recognize the proper role of the IV. In this kind of usage,
the initialization vector is not part of the secret key, and does not need to be
kept secret. This means that it can be transmitted in the clear to the recipi-
ent. However, making sure it is random can help prevent precomputation-based
time/space tradeoffs for brute force attacks.

However, the use of IV’s can be security weakness, depending on how the
IV is used. A good example is any cipher in which partial knownledge of the
key together with some ciphertext can be used to find more of the key. If this
is true, then just prepending the IV to the key to form a session key can leak
information about the real key. RC4 suffers from this problem.

4 RC4

RC4 is a very popular cipher from RSA Data Security, Inc. It was designed by
Ron Rivest of M.I.T. It is a trade secret of RSA, but was leaked to a number

5

of mailing lists and newsgroups in the early-mid 90’s. People with access to real
implementations of RC4 have confirmed its authenticity. It was described in [4].

RC4 is used in a number of applications currently. One of its most important
uses is in SSL (also known as TLS), which is used to secure most of the worlds
electronic commerce over the world wide web. It is also used in WEP, the IEEE
802.11 wireless networking security standard. It can also be found in a number
of other applications including email encryption products.

4.1 Description

RC4 is a binary additive stream cipher. It uses a variable sized key that can
range between 8 and 2048 bits in multiples of 8 bits (1 byte).

This means that the core of the algorithm consists of a keystream generator
function. This function generates a sequence of bits that are then combined with
the plaintext with XOR. Decryption consists of re-generating this keystream and
XOR’ing it to the ciphertext, undo’ing it.

The other major part of the algorithm is the initialization function,n which
accepts a key of variable size and uses it to create the initial state of the
keystream generator. This is also known as the key schedule algorithm.

RC4 is actuall a class of algorithms parameterized on the size of its block.
This parameter, n, is the word size for the algorithm. This is recommended
n = 8, but for analysis purposes it can be convenient to reduce this. Also, for
extra security it is possible to increase this value.

The internal state of RC4 consists of a table of size 2n words and two word-
sized counters. The table is known as the S-box, and will be known as S. It
always contains a permutation of the possible 2n values of a word. The two
counters are known as i and j.

The Key Schedule Algorithm of RC4 is shown in Figure 1. It accepts as input
the key stored in K, and is l bytes long. It starts with the identity permutation
in S and, using the key, continually swapping value to produce a new unknown
key-dependent permutation. Since the only action on S is to swap two value, the
fact that S contains a permutation is always maintained.

Initialization:
For i = 0 to 2n − 1

S[i] = i
j = 0

Scrambling:
For i = 0 to 2n − 1

j = j + S[i] +K[i mod l]
Swap(S[i], S[j])

Fig. 1. RC4 Key Schedule Algorithm

6

The RC4 keystream generator is shown in Figure 2. It works by continually
shuffling the permutation stored in S as time goes on, each time picking a differ-
ent value from the S permutation as output. One round of RC4 outputs an n
bit word as keystream, which can then be XOR’ed with the plaintext to produce
the ciphertext.

Initialization:
i = 0
j = 0

Generation Loop:
i = i+ 1
j = j + S[i]
Swap(S[i], S[j])
Output z = S[S[i] + S[j]]

Fig. 2. RC4 Pseudo Random Generation Algorithm

4.2 Observations

– S starts as a permutation (the identity permutation) of the 2n possibly
words. Since the only operation on S is Swap, S remains a permutation.
However, this permutation changes with time. This is where the strength of
RC4 comes from.

– The internal state is stored in M = n2n + 2n bits. However, since S is
a permutation, this state holds effectively log2(2n!) + 2n ≈ 1700 bits of
information.

– Knowing the entire M bits of the state at a given time is enough to predict
all of the keystream bits in the future.
• Knowing the entire initial state is enough to predict all of the keystream

bits, effectively breaking the cipher
– The initial state is dependent solely on the key K. Therefore knowing the

key is sufficient to break RC4.
– Although the KSA is reversable, it is difficult to determine the key K from

the initial state of S. However, this is unnecessary to break the cipher.
– The key completely and uniquely determines the keystream.
– The period of RC4 is difficult to predict, and dependent on the key. However,

empirical evidence from [5] suggests that the period is normally very long.

5 State Progression Attacks

This is the first of two sections discussing the analysis of RC4. This section
discusses attacks based solely on the pseudo-random generator algorithm. This
include mainly distinguishers based on observations about the progression of

7

states as the algorithm runs. The next section deals with attacks based on the
key schedule.

This section has four parts. The first is the state guessing attack developed in
[5] and [6]. This forms a basis for attacks, and is used occasionally in the other
attacks. The second section discusses a very interesting sampling bias in the
second output word, discussed in [3]. The final section discusses a generalization
of the fortuitous states defined in [7] and defines predictive states, discussed in
[3].

5.1 State Guessing

In [6], a sophisticated attack on RC4 is developed. This idea behind this attack
is to guess some of the initial state of the RC4 keystream generator, and by
looking for contradictions in the keystream it is possible to detect incorrect
guesses and to discover the rest of the initial state.

In this discussion, let it and jt be the values of the two counters at time t.
Also, let St be the state at time t. Therefore, the output of RC4 at time t is

zt = St[St[it] + St[jt]] (4)

This notation simplifies talking about the state as it progresses through time.
Let us begin our analysis by looking at simplified versions of RC4. Consider

RC4 without any swap operation. (This only applies to the PRGA). This means
that the state St is the same for all time values. Denote this S. This leads to a
quick theorem:

Theorem 1. If the swap operation of RC4 is omitted, the keystream becomes
cyclic with a period of 2n+1

Proof. By Equation 4, zt+2n+1 = S[S[it+2n+1]+S[jt+2n+1]]. Because of the modu-
lar addition, it+2n+1 = it. Since S is constant, the step jt = jt−1+S[it] can be ap-
plied repeatedly. This gives us zt+2n+1 = S[S[it]+S[jt+

∑2n+1−1
u=0 S[u]]]. Since S is

a permutation, the sum of all its elements is (2n−1)(2n)
2 = 2n−1 (mod 2n). There-

fore,
∑2n+1−1
u=0 S[u] = 2 · 2n−1 = 0 (mod 2n). So, zt+2n+1 = zt = S[S[it] + S[jt]].

�
Looking at Equation 4, there are up to four unknowns. At any time t, it is

always known. For a known plaintext attack, zt is also known. The four variables
that are possibly unknown are jt, S[it], S[jt], and S−1[zt]. From any three of
these variables, the fourth can be calculated:

jt = S−1[S−1[zt]− S[it]] (5)

S[it] = S−1[zt]− S[jt] (6)

S[jt] = S−1[zt]− S[it] (7)

S−1[zt] = S[it] + S[jt] (8)

8

The algorithm to recover S works as follows. Initially, guess a small subset
of the values of S. Use equations 5-8 as time t progresses to derive additional
values of S. If a contradiction arises, then the initial guess was incorrect. Repeat
this process for all possible guesses.

i0 and j0 are both known (0) when the algorithm starts. If the guesses of S
guess the first x values of S, then j0 through jx−1 is known. For each of these,
equations 7 and 8 can be used to determine more values of S. Once it goes
past x, if S[x + 1] is not known, we lose the knowledge of jt. We discard the
next values of zt until we can use Eq. 5 to discover jt again. We can do this
when S[it] is known, the value zt appears in what is known of S, and the value
S−1[zt]− S[it] also appears in what is known of S. Once jt is recovered, we can
then work backwards using 6 to recover more entries of S. Once we have finished
working backworks, we continue as we started, using Eq. 7 and Eq. 8 to discover
values of S until we lose the value of jt.

Using this algorithm, the entire state of this variant of RC4 can be deter-
mined. This is a fairly simple attack and does not require much time at all.
Others variants studied in [6] include having a reduced swap frequency, where
the swap operation is only executed once every 2n iterations. From the results
in [6], a swap frequency of 2−7 requires 40 correctly guessed values, and a swap
frequency of 2−1 requires 240 correctly guessed values of S. (These numbers are
for a success ration of 50%)

Full RC4 A modification of this attack can be used to successfully attack the
full RC4. In this modification, no values of S are guessed initially, but are only
guessed as needed. Since S is a permutation, this is useful to limit the number of
possibilities for each guess, because the value cannot be one that is already in the
table at the time. This can be implemented efficiently by a recursive function.
The running time of this algorithm is calculated exactly in [6] and is O(

√
2n!).

5.2 Second Byte Bias

There has been a good bit of analysis of the probabilities of any given value
being output by RC4. Most of these analyses have approached RC4 by looking
at a given output. Mantin and Shamir, in [3], approach this differently. They
looked for a polynomial-space distinguisher. In this search, they came up with a
startling finding.

Theorem 2. If S0[2] = 0 and S0[1] 6= 2, then Z1 = 0 with probability 1.

Proof. Initially, i and j are 0. i is incremented and now points to S[1]. Denote
S0[1] = X. Then j is incremented to 0 + S0[1] = X. So now j points to X.
Denote the value S0[X] = Y . X and Y are swapped in the permutation, and
the value S[X + Y] is output as the first output. Then i is incremented to 2. j
is incremented to X + S[2] which by assumption is X + 0 = X. The the values
of X and 0 (the value in position 2) are swapped. The second output is then
S[X + 0] = S[X] = 0. The second assumption is needed to insure that the zero
is not swapped out of its position before it is output. �

9

Theorem 3. Given a random initial state, the value of the second output of
RC4 is 0 with probability 2

2n .

Proof. When S0[2] = 0, the probability that a zero is output is approximately 1.
When S0[2] 6= 0, then the probability that a zero is output is essentially random,
meaning 1

2n . Thus, the total probability that the second output is zero is

P [z1 = 0] = P [z1 = 0|S0[2] = 0] · P [S0[2] = 0] + P [z1 = 0|S0 6= 0] · P [S0 6= 0]

≈ 1 · 1
2n

+
1
2n
·
(

1− 1
2n

)
=
(

1 + 1− 1
2n

)
· 1

2n

≈ 2
2n

(9)

which is twice the expected probability. �
An interesting (but not yet useful) observation is that by applying Bayes

rule, we can predict the value of a single word in the state with a non-negligible
probability.

P [S0[2] = 0|z1 = 0] =
P [S0[2] = 0]
P [z1 = 0]

· P [z1 = 0|S0[2] = 0]

=
1

2n

2
2n

=
1
2

(10)

This means that when the second output is 0, we can guess the value of S0[2]
with probability 1

2 . Unfortunately, no one seems to know how to use this to speed
up an attack.

A Polynomial-Space Distinguisher A polynomial-space distinguisher can be
constructed from this information. However, a theorem should be proven first.

Theorem 4. Let X,Y be probability distributions. Supposed event e happens
in X with probability p, and happens in Y with probability p(1 + q). Then, for
small p and q, the number of samples needed to distinguish between X and Y is
O
(

1
pq2

)
.

Proof. Let Xe and Ye be random variables specifying the number of occurances
of e in t samples. The expectations, variances, and standard deviations are (as-
suming small values of p and q):

E[Xe] = tp E[Ye] = tp(1 + q)
V (Xe) = tp(1− p) ≈ tp V (Ye) = tp(1 + q)(1− p(1 + q)) ≈ tp(1 + q)

σ(Xe) =
√
V (Xe) ≈

√
tp σ(Ye) =

√
V (Ye) ≈

√
tp(1 + q) ≈

√
tp

10

Our goal is to find the number t of samples required to have one standard
deviation between the two expectations:

E[Ye]− E[Xe]. ≥ σ(Xe)

tp(1 + q)− tp ≥
√
tp

tpq ≥
√
tp

t2p2q2 ≥ tp

t ≥ 1
pq2

Therefore, O
(

1
pq2

)
values suffice for distinguishing betwen X and Y . �

Let X be the probability distribution of the second word in randomly gen-
erated output, and ley Y be the same probility for RC4. Let the event e be
that the second word output is 0. This happens in X with probability 1

2n , and
in Y with probability 2

2n . By using Theorem 4 with p = 1
2n and q = 1, we can

conclude that we need 1
pq2 = 2n outputs to reliably distinguish between RC4

and random.

5.3 Predictive States

Fluhrer and McGrew in [7] and Mantin and Shamir in [3] define a class of states
in which a non-negligable bias appears in the keystream. These collectively are
known as predictive states. But first, some definitions.

Definition 1. An a-state is a partially specified state that includes values for i,
j, and a values in S. Note that the values in S are not necessarily consecutive.

Definition 2. Let A be an a-state. If all RC4 states that are compatible with
A have the same output word after r rounds, then A is said to predict its rth

output.

Definition 3. Let A be an a-state. If there exists some r1, . . . , rb such that A
predicts the outputs of rounds r1, . . . , rb, then A is called b-predictive.

Therefore, a b-predictive a-state is a state where b outputs are predicted
accurately by just the a values in the state. The interesting part is that the b
values are not necessarily consecutive, and to not necessarily follow directly after
a. It is hypothesized that b-predictive a-states only exist when b ≤ a.

Distinguishers Any b-predictive a-state can introduce some bias in the output
of RC4. Denote the event that the current state is compatible with a given
a-state A as EA. Denote the event that the outputs in rounds r1, . . . , rb are
those predicted by A as EB . EA contains a + 2 values (i, i, and a values of S)
that thus has a probability of approximately (2n)−(a+2). Whenever EA occurs,

11

so does EB . If EA does not occur, then EB occurs with probability (2n)−(b+1).
(based on the choice of i and the b outputs) Thus, the probability of EB is:

P [EB] = P [EB |EA] · P [EA] + P [EB | 6= EA] · P [6= EA]

≈ 1 · (2n)−(a+2) + (2n)−(b+1)
(

1− (2n)−(a+2)
)

= (2n)−(b+1)
(

1− (2n)−(a+2) + (2n)b+1−(a+2)
)

≈ (2n)−(b+1)
(

1 + (2n)b−a+1
)

(11)

In this case, a new theorem is:

Theorem 5. For an b-predictive a-state, there exists a distinguisher that dis-
tinguishes RC4 from random that requires O

(
(2n)2a−b+3

)
output words.

Proof. By applying Theorem 4 with p = (2n)−(b+1) and q = (2n)b−a+1, the
number of output words required to use this distinguisher to distinguish from
random is O

(
1
pq2

)
= O

(
(2n)2a−b+3

)
output words. �

Note that the second byte bias in §5.2 is a 1-predictive 1 state.

Attacks with Predictive States Applying Bayes rule like we did in §5.2, we
achieve another interesting result:

P [EA|EB] =
P [EA]
P [EB]

· P [EB |EA]

≈ (2n)−(a+2)

(2n)−(b+1)

= (2n)b−a−1

(12)

In this case, EA is the internal event (that the state is a-predictive), and
EB is the external event (that the outputs were as predicted). Thus, when we
observe EB , we can conclude with probability (2n)b−a−1 that the internal state
is compatible with EA. If we see (2n)−(b−a−1) occurrences of EB , then at least
one is likely to be an occurance of EA.

Let us try to construct an attack based on this. We continually observe
the output stream for b-predictive a-state (of which we have a list somehow).
Whenever we find the predicted b outputs of one of these states, we will in the
appropriate a values in the state and run the Branch and Bound attack from §5
with this partial information to try and determine the rest of the state. This can
provide a reduction in the amount of searching the Branch and Bound attack
needs to do. With enough occurances of the appropriate predicted outputs, one
of the b-predicted output sequences is likely to correspond to the correct a-state.

Intuitively, the value a determines the quantity of information that is re-
vealed, but it also decreases the probability of it occuring. As such, the attack

12

is limited to small values of a. Also, the value b − a determines the number of
false positive that have to be examined. Thus, reducing this reduces the time
complexity of the attack. Working with the hypothesis that b ≤ a, the best
predictive state are a-predictive a-state, for appropriately small values of a.

6 Key Schedule Weaknesses

6.1 Related Key Analysis

In [8], Grosul and Wallach analyze RC4 in a related key attack model. In this
model, they determinet that keys related in a certain way cause very similar
outputs for the first few output bytes.

Consider the difference in the initial state of a one byte difference in a full
key. That is, K ′[i] = K[i] except where i = t, when K ′[i] 6= K[i]. Up until the
point t, the key schedule (and the state) will be the same, but at point t the
value of j = (j+S[i]+K[i]) will be different for the two keys, and the remaining
key schedule will be completely different. If t is small, then the resulting initial
states for the two keys will be completely different. However, if t is near 2n, then
the initial states will be very similar.

For notation, let jt be the value of j at the tth step in the key schedule.
Consider two complimentary changes in the key to produce a related key: K ′[i] =
K[i] + δ and K ′[i + 1] = K[i + 1] − δ. In this case, j′t = jt + δ and most likely
j′t+1 = jt+1. This is called twiddling the key at position t, and K and K ′ are
related keys.

So, what happens if the swap on the t iteration affects future values of j or
j′? This happens whenever jt > t or j′t > t. The probability of this occuring is
1− t

2n .
Unless jt = t+ 1 or j′t = t+ 1, immediately following the twiddle j′+ t+ 1 =

jt+1. This is a good twiddle, meaning only three values in S differ from those in
S′ after the tth step. Following a good twiddle, the key schedule will be identical
until S[i] 6= S[i]. At this point, the two key schedules will diverge.

6.2 Key-Biased Output

In [9], the first half of the paper describes a set of weak keys in which a certain
subset of the key bits completely determine a subset of the output bits. First,
a couple of definitions must be made. Then, the attack will be explained. For
the first bit, we will work with a variant of the RC4 Key Schedule Algorithm
known as KSA∗. See Figure 3 for the definition. The primary difference is that
i is incremented at the beginning of this loop instead of the end (or equivalently,
i is initialized to 1).

Definition 4. Let S be an RC4 State table, t be an index in S and b be some
integer. If S[t] ≡ t (mod b), then the state S is said to b-conserve the index t.

Definition 5. Let Ib(S) be the indices that the state S b-conserves.

13

Initialization:
For i = 0 to 2n − 1

S[i] = i
i = 0
j = 0

Scrambling:
Repeat N times

i = i+ 1
j = j + S[i] +K[i mod l]
Swap(S[i], S[j])

Fig. 3. The Key Schedule Algorithm Variant KSA∗

Definition 6. A state S is said to be b-conserving if Ib(S) = 2n. A state S is
said to be almost b-conserving if Ib(S) = 2n − 2.

Definition 7. Let b, l be integers such that b|l. Let K be a key of l words. K
is called b-exact if for all indices t, K[t mod l] ≡ (1 − t) (mod b). In the case
where K[0] = 1 and the most significant bit of K[1] is 1, K is called a special
b-exact key.

Notes on Key Schedule Now on to prove some facts about these states and
keys.

Lemma 1. If it+1 ≡ jt+1 (mod b), then Ib(St+1) = Ib(St).

Proof. Only operations that modify S can change I. Therefore, the only opera-
tion to consider is the swapping operation. When it+1 ≡ jt+1 (mod b), then St
either b-conserves both indices it and jt or neither. Therefore, the swap operation
does not affect the number of indices that S b-conserves. �

Theorem 6. Define b = 2q for some q ≤ n. Suppose that b|l and K is a b-exact
key of l words. The the permutation S = KSA∗(K) is b-conserving.

Proof. The proof of Theorem 6 is by induction on t. We will prove that for any
0 ≤ t ≤ 2n, Ib(St) = 2n and it ≡ jt (mod b). This implies that Ib(S2n) = 2n and
therefore S2n is b-conserving.

For t = 0, the basis case, the claim is trivial, since i0 = j0 = 0 and the identity
permutation is b-conserving for every b. Now assume that it ≡ jt (mod b) and
that St is b-conserving. Now:

it+1 = it + 1 (13)
jt+1 = jt + St[it+1] +K[it+1 mod l] ≡ it + it+1 + (1− it+1) (mod b) (14)

Therefore, jt+1 ≡ it+1 (mod b). Then by Lemma 1, Ib(St+1) = Ib(St). �
This is a really interesting result. This means that a small subset of the bits

of K (lq bits) completely determines a large number of bits in the initial state
(q2n bits).

14

Difference between KSA and KSA∗ The primary difference between KSA
and KSA∗ is that KSA does not even preserve the equivalence of i and j after
the first round. However, if K is a special b-exact key, then K[0] = 1, and the
value of j after the first round is forced to be 1. Therefore, the equivalence
between i and j is preserved except for the first round. Therefore, for a special
b-exact key, the resulting intial permutation is almost b-conserving much of the
time. If the value of i reaches one of the non-b-conserving indices, then the value
of j will diverge from i (mod b). So, if the most significant bit of K[1] is 1, then
the non-b-conserving values will be put in the second half of the permutation,
where j has plenty of chance to meet it and swap it to before i before i gets to
it.

[9] claims that it can be proven that the probability that a special b-exact
key produces an almost b-conserving initial permutation is greater than 2

5 , and
in practice is ususally greater than 1

2 .

Output correlation

Theorem 7. Let RC4∗ be a weakened version of RC4 with no swap operations.
Let S0 be a b-conserving initial permutation with b = 2q, q ≤ n. Define {Xt}∞t=1

be the output sequence of RC4∗ using S0 as the initial state. Also define xt = Xt

mod b. Then the sequence {xt}∞t=0 is predictable and periodic with period 2b.

Proof. The value of S0 mod b is known, as well as i = j = 0, the initial values of
the counters. Since S never changes, and i, j, and S are all known mod b, the
PRGA without swaps can be simulated mod b accurately. With deeper analysis
(see [9]), it can be shown that the period is 2b. �

Since in each step of the RC4 swaps at most two values of S, the S per-
mutation remains very similar to the S permutation in RC4∗. Therefore, for a
substantial number of outputs of RC4, the output will mirror that of RC4∗.

This fact can be used to form a distinguisher for RC4 from random for a sub-
set of the possible keys. For these keys, the outputs of RC4 will be significantly
similar to the outputs of RC4∗, much more so than in the random distribution.
Since the number of predetermined bits is linear in l, the size of the bias is also
dependent on l. The analysis in [9] suggests that a distinguisher for RC4 can be
built using this fact that can distinguish RC4 from random in 221 output words
for 64 bit keys.

Another interesting observation is that the biases in the least significant bits
of the output can be combined with the biases in the least significant bits of
english text to provide a ciphertext-only distinguisher.

Related Key Attack This provides a good attack in a rather non-standard
attack model. In this model, the attacker is given a black box that has RC4
with a given key K in it. The attacker can give the black box a value, ∆, and
the black box will generate output using K ′ = K ⊕ ∆ as the key. The goal of
this model is to determine K.

15

This attack works in n stages, where in stage q the Qth bit of every key
word is exposed. This attack has two algorithms that is uses. The first is the
CheckKey algorithm. This algorithm accepts the RC4 black box, a value ∆ and
a parameter q, and determines whether the output of the black box is special 2q-
exact. This can be done in O(1) time (see [9]). The second algorithm is Expand,
which accepts a black box and a ∆ which form a special 2q−1-exact key and
makes it special 2q exact. This is accomplished by enumerating all possibilities
of the qth bits of each key word and invoking CheckKey to determine if it is a
special 2q-exact key. There are 2l−1 possibilities for these bits. For q = 1, this is
a little different. Expand with q = 1 works by determining the entire K[0] (by
setting it to 1) and setting the most significant bit of K[1] to 1. for q = 1, the
time complexity of Expand is O(2n+1), and for all other values of q it is O(2l−1).

Since there is only one special 2n-exact key, the value of K ′ is known for the
special 2n-exact key, and therefore K can be calculated. The time complexity
of this attack is O(2n+l + n2l−1) = O(2n+l), which is significantly faster than
brute force (O(22n!)).

6.3 Initialization Vector Weaknesses

This section deals with attacks on RC4 using an initialization vector. Specifi-
cally, for brevity, this section will focus on the case where the IV precedes the
secret key. The case where the IV follows the secret key is covered in [9], as well
as the attack presented here.

First, some notation is necessary. Let it and jt be the values of the two
counters after t steps of KSA, and also St be the state of the permutation after
t steps of KSA.

The first word output from RC4 is dependant on only three values of S.

Definition 8. Let X = Si[1] and Y = S[X]. In KSA, if i ≥ 1, i ≥ X, and i ≥
X+Y , and Si[1], Si[X], and Si[X+Y] are all known, then the situation is called
resolved. In this case, the first word output from RC4 will be S[S[1] + S[S[1]]]
with probability greater than e−3 ≈ 0.05.

This probability comes from the probability that none of the three relavent values
will be disturbed in the rest of the key schedule. Since the value of i has already
passed the three values in the resolved condition, only by j pointing to one of
those values can they be disturbed. Modelling j as a random value for the rest
of the key schedule, the probability is the probability that j never equals one of
those three specific values.

Let us consider the case where a 3 word IV is prepended to a secret key to
form the session key. If K ′ is the secret key and IV is the IV, then K = IV ||K ′ is
the session key. Since the IV is 3 words long, and the secret key is l words long, the
session key is always 3+ l words long. The secret key values are K[3] . . .K[l+2],
and the (known) IV values are K[0] . . .K[2].

Consider the case where we known the first A values of the secret key
(K[3] . . .K[A + 2]). Examine a series of IV’s of the form (A + 3,−1, X), where
X is a random value.

16

In the first step, j is advanced by S0[0] = A + 3. On the next step, i is
advanced, and the advance on j is computed to be j1 = j0 + S0[1] + K[1] =
j0 +1+(−1). Therefore, j is not moved. Then S[i] and S[j] are swapped. On the
next step, j is advanced by X+2. From here on until i = A+3, the key schedule
can be computed. Since all the X’s are different, each IV acts differently. At this
point (iA+2 = A + 2), the value of jA+2 and of the entire permutation SA+2

are known. At this point, if either S[0] or S[1] have been disturbed, the attacker
throws out this IV. We also know SA+2[A+3]. The value that will be SA+3[A+3]
depends on jA+3 = jA+2 + SA+2[A + 3] + K[A + 3], which is two knowns and
one unknown. SA+3[A+ 3] = SA+2[jA+3]. This is a state in a (pseudo) resolved
condition. Therefore, with probability approximately 0.05, none of the three
important values will be touched by the remaining key schedule, and the first
output word will be S[A+ 3].

In this case, it is possible to calculate K[A+ 3]. Let’s expand some formulas
and see if we can derive it:

z0 = S[S[1] + S[S[1]]]
= S[0 + S[0]]
= S[A+ 3]
= SA+2[jA+3]
= SA+2[jA+2 + SA+2[A+ 3] +K[A+ 3]]

(15)

At this point, we know SA+2, jA+2 and z0 (the first output word). Therefore we
can calculate K[A+ 3] as:

K[A+ 3] = S−1
A+2[z0]− jA+2 − SA+2[A+ 3] (16)

If we use approximately 60 IV’s of the form above, we can calculate secret
key byte A. If we iterate this attack over all the secret key bytes (l bytes), it
takes approximately 60l chosen IV’s and their corresponding first output byte
to determine the entire secret key.

Generalization of the IV’s First, let us see what conditions on the 3-byte
IV’s are necessary to make this attack work. The two most important conditions
are:

1. We know the state SA+2 in its entirety.
2. The first output byte is SA+3[A + 3] = S[S[1] + S[S[1]]]. This leads to the

condition that S3[1] + S3[S3[1]] = A+ 3.

Also, for the resolved condition to hold, the values at time 3 must all be less
than 3. Therefore, the additional condition of S[1] < 3 must also hold. Condition
one always holds if we know the IV.

These three conditions are sufficient to carry out this attack. The number of
IV’s that fit these criteria is much larger than the number of IV’s that fit our
previous criteria. Therefore, a known IV attack, where the attack does NOT get
to choose the IV’s, is greated accelerated by using these criteria.

17

As a matter of fact, none of these criteria make significant use of the fact
that the IV is 3 words long. This can be generalized to attack an IV of any size.
There criteria for IV’s of length I words are:

1. SI [1] + SI [SI [1]] = I +B
2. SI [1] < I

In this case, Equation 16 can be generalized to be:

K[A] = S−1
I+B−1[z0]− jI+B−1 − SI+B−1[I +B] (17)

where K[A] is the Ath byte of the secret key (not including the IV).

WEP WEP, the Wireless Encryption Protocol, uses RC4 with a prepended
3 byte IV for its encryption. Also, the first byte of the plaintext is always a
known value. This attack has been successfully used to attack WEP encryption,
requiring roughly 5,000,000 packets with the same key to determine that key.
This can be gotten quite easily and is considered a major weakness in this system.

7 Summary

In this paper stream ciphers where explained and a number of attacks mod-
els were described. RC4 was defined, and six attacks were developed against
this algorithm: the Branch and Bound attack, the Second Word Bias, Predictive
States, the Derailing Related Keys attack, the Special Exact Keys and the Ini-
tialization Vector Weakness. Overall, RC4 is still considered secure if you use
a hash function to form session keys from secret keys and IV’s, and discard the
first 2n words of output before use.

References

1. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Chapter 6. In: Handbook of
Applied Cryptography. CRC Press (1997) pp. 191–195 http://www.cacr.math.

uwaterloo.ca/hac/.

2. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of a5/1 on a pc.
In: Fast Software Encryption (FSE 2000). LNCS, SpringerVerlag (2000) http:

//www.cs.berkeley.edu/~daw/papers/a51-fse00.ps.

3. Mantin, I., Shamir, A.: A practical attack on broadcast rc4. In: Fast Soft-
ware Encryption (FSE 2001). LNCS, SpringerVerlag (2001) http://www.wisdom.

weizmann.ac.il/~itsik/RC4/Papers/bc_rc4.ps.

4. Schneier, B.: Chapter 17. In: Applied Cryptography. Second edn. John Wiley and
Sons, Inc. (1996) pp. 397–398

5. Mister, S., Tavares, S.: Cryptanalysis of rc4-like ciphers. In Tavares, S., Mei-
jer, H., eds.: Selected Areas of Cryptography (SAC ’98). Volume 1556 of LNCS.,
SpringerVerlag (1999)

18

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cs.berkeley.edu/~daw/papers/a51-fse00.ps
http://www.cs.berkeley.edu/~daw/papers/a51-fse00.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/bc_rc4.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/bc_rc4.ps

6. Knudsen, L., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis method
for (alleged) rc4. In Ohta, K., Pei, D., eds.: Advances in Cryptology, Proc Asiacrypt
’98. Volume 1514 of LNCS., SpringerVerlag (1998) http://www.wisdom.weizmann.
ac.il/~itsik/RC4/Papers/Knudsen.ps.

7. Fluhrer, S., McGrew, D.: Statistical analysis of the alleged rc4 key stream
generator. In Schneier, B., ed.: Fast Software Encryption (FSE 2000).
LNCS, SpringerVerlag (2000) http://www.wisdom.weizmann.ac.il/~itsik/RC4/

Papers/FluhrerMcgrew.pdf.
8. Grosul, A.L., Wallach, D.S.: A related-key cryptanalysis of rc4. http://www.

wisdom.weizmann.ac.il/~itsik/RC4/Papers/GrosulWallach.ps (2000)
9. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of

rc4. In: Selected Areas of Cryptography (SAC 2001). LNCS, SpringerVerlag (2001)
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps.

10. Golic, J.D.: Linear statistical weakness of alleged rc4 keystream generator. In
Fumy, W., ed.: Advances in Cryptology, Proc. Eurocrypt ’97. Volume 1233 of
LNCS., SpringerVerlag (1997) pp. 226–238 http://www.wisdom.weizmann.ac.il/

~itsik/RC4/Papers/Golic.PDF.

Index

binary additive stream ciphers, 2
block cipher, 1
brute force attack, 3

fortuitous states, 8

initialization vector, 5
IV, 5

keystream generator, 2

malleability, 3

polynomial-space distinguisher, 4
polynomial-time distinguisher, 4
predictive states, 11

RC4, 1, 4–13, 15, 16, 18
real or random distinguisher, 3
related key attacks, 5

sampling resistance, 3
stream cipher, 2
synchronous stream cipher, 2

http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Knudsen.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Knudsen.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/FluhrerMcgrew.pdf
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/FluhrerMcgrew.pdf
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/GrosulWallach.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/GrosulWallach.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Golic.PDF
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Golic.PDF

